(not in book) 'Congruent' means same size, same _____.
(p. 353) A(n) ________ of a triangle is a perpendicular segment from a vertex to the line containing the opposite side.
(p. 155) When two lines intersect, the angles that are opposite each other are _________ angles.
(not in book) The slope of a vertical line is __________ and it's equation is in the form "x = c," where 'c' is the x-intercept.
(p. 537) If figures are similar, the side lengths are ____________ and the angle measures are equal.
(p. 193) The slope of a line in a coordinate plane is the _____ of the rise to the run.
(p. 72) The _____________ bisector of a line segment is a line ______________ to the segment at the segment's midpoint.
(not in book) If triangles are similar, they are the same shape but different _____.
(p. 364) Triangle Midsegment Theorem: The segment joining the ________ of two sides of a triangle is parallel to the third side, and its length is half the length of that side.
(p. 546) If ___ angles of one triangle are congruent to ___ angles of another triangle, then the two triangles are similar.
(p. 329) perpendicular bisectors, angle bisectors, medians, altitudes, and medians are all examples of special ________ in triangles
(p. 361) The __________ of a triangle is a line segment that connects the midpoints of two sides of the triangle.
(p. 11) The Midpoint _______: The midpoint M of AB with endpoints A(x1, y1) and B(x2, y2) is given by M[(x1+x2)/2, (y1+y2)/2].
(p. 194) Parallel lines have _____ slopes.
(not in book) A postulate is assumed to be true, while a(n) _______ is proven true.
(p. 163) __________ interior angles are nonadjacent angles that lie on opposite sides of the transversal between the intersected lines.
(p. 163) Corresponding ______ lie on the same side of the transversal and on the same side of the intersected lines.
(p. 515) A(n) _________ is a transformation that can change the size of a polygon but leaves the shape unchanged.